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High-coverage metabolomics uncovers microbiota-
driven biochemical landscape of interorgan
transport and gut-brain communication in mice

Yunjia Lai® !, Chih-Wei Liu® ', Yifei Yang!, Yun-Chung Hsiao® !, Hongyu Ru' & Kun Lu'™

The mammalian gut harbors a complex and dynamic microbial ecosystem: the microbiota.
While emerging studies support that microbiota regulates brain function with a few mole-
cular cues suggested, the overall biochemical landscape of the “microbiota-gut-brain axis”
remains largely unclear. Here we use high-coverage metabolomics to comparatively profile
feces, blood sera, and cerebral cortical brain tissues of germ-free C57BL/6 mice and their
age-matched conventionally raised counterparts. Results revealed for all three matrices
metabolomic signatures owing to microbiota, yielding hundreds of identified metabolites
including 533 altered for feces, 231 for sera, and 58 for brain with numerous significantly
enriched pathways involving aromatic amino acids and neurotransmitters. Multi-
compartmental comparative analyses single out microbiota-derived metabolites potentially
implicated in interorgan transport and the gut-brain axis, as exemplified by indoxyl sulfate
and trimethylamine-N-oxide. Gender-specific characteristics of these landscapes are dis-
cussed. Our findings may be valuable for future research probing microbial influences on host
metabolism and gut-brain communication.
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ARTICLE

he mammalian body and particularly the gastrointestinal

(GI) tract is inhabited by hundreds of trillions of microbes,

collectively termed the microbiotal. Complex, dynamic,
and metabolically active by nature, these commensal microbes
have been discovered to constantly interact with the host as a
crucial mediator for physiological processes spanning energy
harvest?, immune cell development’, and gut epithelial
homeostasis?. Interestingly, recent studies support that micro-
biota also harbors novel neuroactive potential with links to
neurological and/or psychiatric disorders, as further encapsulated
as the “microbiota-gut-brain axis™. For example, using maternal
immune activation (MIA) mouse, a model of autism spectrum
disorder (ASD), Hsiao and colleagues discovered® that both ASD-
mimicking GI barrier defects and behavioral abnormalities MIA
offspring exhibited were restored through colonizing human
commensal Bacteroidetes fragilis, supporting a gut-microbiota-
brain connection for autism. In a recent work by Valles-Colomer
and colleagues’, analyses of a large human cohort correlating
fecal metagenomic features with indicators of quality of life and
depression identified microbial strains, pathways, and metabolites
pertaining to mental health and gut-brain interaction, providing
the first population-scale evidence linking microbiota to mental
health outcomes.

Despite the emerging data, whether and how microbiota controls
brain function remains largely undefined. It has been postulated
that at least two routes are involved®, namely (i) the vagus nerves
(neuronal) that connect the central nervous system (CNS) and
enteric nervous system (ENS, the “second brain”) and (ii) the cir-
culatory system (humoral) encompassing blood and lymphatic
circulation. Gut microbes, in close proximity to numerous local
neurons and immune cells, may either act on the ENS in situ to
signal the CNS remotely, or more likely, they synthesize or trans-
form molecular cues that can translocate from gut lumen to sys-
temic circulation, and possibly cross the blood-brain barrier (BBB)
and affect CNS directly’. Despite such interest, surprisingly,

molecular underpinnings for such microbiota-gut-brain axis are
unclear. Although there have been sporadic studies targeting a few
microbial molecules or chemical classes in this regard, as repre-
sented by a-synuclein!®, 3,4-dihydroxyphenylacetate’, and bile
acids!'!, many of these still have yet to be validated as a gut-brain
mediator.

In this work, we use high-coverage comparative metabolomics
analyses combining targeted and untargeted annotation strategies
to address this (Supplementary Fig. 1)1213, We profile fecal, blood
sera, and cerebral cortical brain tissues of 8-week-old germ-free
(GF) C57BL/6 mice and their age-matched conventionally raised
(CONV-R) specific-pathogen-free counterparts using high-
resolution mass spectrometry (HRMS). We assess group pat-
terns using univariate and multivariate statistics, annotate che-
mical structures of all distinct ion features through an integrated
cheminformatic approach, and leverage a suite of statistical and
data visualization tools for systematic comparisons across sample
compartments. Here, we report 701 unique metabolites of dif-
ferentiated GF/CONV-R profiles; potential mechanistic links of
resident microbiota to the humoral gut-brain axis are examined
through enrichment analyses, random forest classification, and
metabolomic network analysis. This work presents datasets from
a unique multi-metabolome perspective for probing microbial
influences on mammalian interorgan transport and gut-blood-
brain interaction.

Results

High-coverage metabolomics of GF vs. CONV-R mice. To
uncover metabolites underlying microbiota-host interaction in
light of gut-brain signaling, we conducted metabolomics, targeted
and untargeted, on fecal matter, blood sera, and brain tissues
(cerebral cortex slices) for 12 GF and 12 CONV-R C57BL/6 mice
(8-week-old) (Fig. 1a). Using UHPLC-HESI-HRMS, we detected
and aligned ion features into master peak tables for each sample
type based on MSI1 full-scan data, generating total ion feature
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Fig. 1 Overview of experimental approach and multi-metabolomics analyses. a Experimental workflow started with sample harvest and metabolite
extraction of feces, blood sera, and cerebral cortical brain tissues from 8-week age-matched germ-free (GF, N =12) and conventionally raised (CONV-R)
specific-pathogen-free C57BL/6 mice (N =12). A novel high-coverage metabolomics approach was used featuring orbitrap high-resolution mass
spectrometry, targeted annotation based on an in-house mass spectral library, untargeted annotation using a streamlined cheminformatic pipeline for de
novo structural dereplication, univariate and multivariate statistics, and data visualization. b Number of total and significant ion features (p-value < 0.01,
fold change > 1.5, two-sided Welch's t-test) detected for feces, blood sera, and cortical brain tissues under HESI positive and negative modes of analysis.
¢ Trend distribution of significantly altered ion features. d Venn diagram of all identified metabolites of GF/CONV-R difference among the three sample
matrices. Chroma chromatography, HESI heated electrospray ionization, PRM parallel reaction monitoring, QA/QC quality assurance/quality control, ISD
internal standard, PCA principal component analysis, RT/mz library retention time and mass-to-charge ratio pair library, ExpDB experimental database,
MoNA MassBank of North America, GNPS The Global Natural Product Social Molecular Networking.
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numbers ranging from highest 17,386 for feces (heated ESI+) to
lowest 6,334 for brain tissues (heated ESI+) (Fig. 1b). We sta-
tistically assessed these tables to screen for features of GF/CONV-
R difference (fold change>1.5, p value <0.01, Welch’s t-test)
(Fig. 1b, c), yielding a total of 20,939 significant ion features
including 16,001 for feces, 3,977 for sera, and 961 for brain tis-
sues. Tandem mass spectra were acquired for all these features,
and the highest metabolome coverage possible was achieved
through a cheminformatic pipeline incorporating targeted and
untargeted annotation procedures (Fig. 1a; Supplementary Fig. 1).
The targeted procedure matched the unknown against an in-
house spectral library containing retention time, accurate mass,
and MS2 characteristic fragments for 423 authentic chemical
standards of canonical pathway metabolites and 46 literature-
reported microbial by-products including neurotransmitters
(Supplementary Data 1). Meanwhile, untargeted analyses entailed
validated rules and tools for formula generation!4, structural
dereplication!®, and machine learning-based retention time
prediction'®. We manually curated and combined identification
results from both procedures, yielding confidently annotated 533
fecal metabolites, 231 serum metabolites, and 58 metabolites of
either level 1 confirmed structure or level 2 probable structure!”
(Fig. 1d; Supplementary Data 2, 4).

Microbiota as a master regulator of gastrointestinal metabo-
lism. Because the gut is the largest niche for commensal microbes
and houses most critical sites of digestion, homeostasis, and
immunity, gut lumen metabolomes represent a unique avenue for
probing microbiota-host interaction!®. Our metabolomics
revealed distinct fecal patterns due to microbiota, as illustrated in
principal component analysis (PCA) (Fig. 2a, b) and metabolomic
total ion chromatogram cloudplot (Fig. 2¢). Note that the 16,001
distinct fecal features accounted for 49.0% of the total detected.
High-coverage cheminformatics successfully resolved 533 fecal
metabolites from these features.

To gain a “landscape” view, chemical similarity enrichment
analysis (ChemRICH)!® was performed. Seventy chemical
classes were clustered, covering a wide lipophilicity range with
varied compound numbers (node size) and overall trends of
change (node color); for the color spectrum of node, red
indicated that among the metabolites of GF/CONV-R differ-
ence, GF-enriched ones outnumbered those increased in
CONV-R and/or overall embraced larger fold changes (Fig. 2d;
Supplementary Data 5, 6). Most significantly enriched were
cholic acids, oligopeptides, glutamates, indoles, and nucleo-
sides, followed by other amino acids (e.g., sulfur, aromatic),
lipids (e.g., acylcarnitines, fatty acids), and neurotransmitter
families including taurine and catecholamines. To interpret in
the context of biologic pathways, we conducted quantitative
metabolite sets enrichment analysis (QMSEA) based on 99 a
priori defined sets of metabolites in the Small Molecule
Pathway Database (SMPDB)202l,  We identified 71
microbiota-perturbed pathways in the GI tract (adjusted
P <0.05) (Supplementary Data 7) with top 50 plotted (Fig. 2e).
Our analyses enriched purines, tryptophan metabolism, bile
acid biosynthesis, porphyrin metabolism, and fatty acid
metabolism, alongside numerous other amino acids (e.g.,
arginine, proline, tyrosine, phenylalanine, aspartate, glycine,
serine, lysine, and branched-chain amino acids), lipid metabo-
lism (e.g., phospholipids, carnitines, and sex steroid hormones),
cofactors (e.g., vitamin K, vitamin Bs, biotin, vitamin B, and
vitamin Bg), and polyamine metabolism (e.g., spermidine), etc.
Both analyses confirmed for microbiota as a master regulator of
gut metabolism, in protein metabolism (over 100 oligopeptides
altered), energy harvest (e.g., fatty acid B-oxidation, carnitine

shuttle, citric acid cycle, and gluconeogenesis), and numerous
signaling pathways that involved amino acids and lipids as
substrates or ligands.

We turned to individual fecal metabolites and select pathways
for in-depth analyses. Using a random forest model, altered fecal
metabolites were ranked by their relative contribution to group
separation with top 50 shown in a variable importance plot (VIP)
(Fig. 3a). Top-ranked members were structurally diverse,
indicating a multifaceted and complex nature of the
microbiome-metabolome network. We specifically focused on
aromatic amino acid pathways because they have confirmed
microbial involvement and neuromodulatory activities22-24,
enriched with tryptophan metabolism being the second most
significant (Fig. 2e), represented major compound classes
perturbed (in addition to those for energy harvest and protein
metabolism) (Fig. 2d), and included multiple metabolite members
highly ranked in the random forest classification model, including
kynurenine (4th), shikimate (12th), and serotonin (21st) (Fig. 3a).
In the integrated view (Fig. 3b), all three tryptophan catabolic
fluxes were enhanced when microbiota was present, as char-
acterized by (i) reduced tryptophan pools (1.4-fold), (ii) decrease
levels of kynurenine, 5-hydroxy-L-tryptophan, and indole, and
(iil) increased levels of serotonin (5-HT) (5.7-fold), kynurenate
(4.1-fold), and indole derivatives of 1.8-36.3-fold changes
including indole-3-propionate (IPA), indole-3-acetate (IAA),
indole-3-lactate  (ILA) and indole-3-carboxaldehyde (I3A)
(Fig. 3b, c). We also observed distinct bile acid patterns with
fold changes as large as three orders of magnitude (Fig. 3d;
Supplementary Data 2). Note that free-form primary bile acids
such as chenodeoxycholate, cholate, muricholates (aMCA
+BMCA) were markedly higher in CONV-R feces, while their
taurine- or glycine- conjugates had an opposite trend. Corre-
spondingly, secondary bile acids were found to be much enriched
in CONV-R feces than in GF’s (Fig. 3d; Supplementary Data 2).

Microbiota extensively mediates gut neurotransmitter pro-
duction and transformation. The discovery that our commensal
microbiota comprises innumerable neurotransmitter producers
has recently led to exciting hypotheses questioning their effects on
host neurotransmission, gut-brain signaling, and mental health
outcomes?>26, Here, we offer a complete analysis of fecal neu-
rotransmitter profiles comparing GF and CONV-R mice. As
selectively shown (Fig. 4a-d), we found for a number of neuro-
transmitters much-elevated levels in the presence of microbiota,
spanning Class A (Rhodopsin-like) G-protein coupled receptor
pathway (GPCR) amines including acetylcholine, epinephrine,
histamine, serotonin, and tyramine (Fig. 4a), Class C metabo-
tropic neurotransmitters L-glutamate and GABA (Fig. 4b) to
neurotransmitters (or their precursors) of other channels or
receptors,  e.g., taurine, L-homocysteate,  L-3,4-dihy-
drophenylalanine (L-DOPA) (Fig. 4c). Many neurotransmitters
were virtually absent in GF feces, as indicated by peak intensities
as low as detection limits even on ultra-sensitive mass spectro-
metry assays of ours. This suggests an essential role of resident
microbiota for neurotransmitter production. Several neuroendo-
crine signaling molecules, namely glycine, cortisol, adenosine, and
2-aminoadipate embraced an opposite trend (Fig. 4d), suggesting
endogenous sources other than influences from microbiota.

We took turns to specifically examine two major neurotrans-
mitter pathways, namely catecholamine biosynthesis (Fig. 4e) and
the glutamine/glutamate-GABA cycle (Fig. 4f), since both have
been suggested recently as potential routes for microbes to
modulate host neurotransmission extending beyond the GI tract
to the entire body. Catecholamines, namely dopamine, norepi-
nephrine, and epinephrine, are biogenic amine neurotransmitters
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Fig. 2 Distinct fecal metabolome profiles owing to the presence of microbiota. a, b Principal component analysis score plot (a) and scree plot (b) for
assessing fecal metabolomic data comparing GF (N =12) and CONV-R mice (N =12) under heated ESI+ mode. ¢ Metabolomic total ion chromatogram
cloudplot of significant ion features in feces between groups (p value < 0.01, fold change > 1.5, two-sided Welch's t test) using heated ESI+ data as an
example; larger circle size indicated larger fold change values ranging from 1.5 to 5300.6. d Chemical similarity enrichment analysis (ChemRICH) clustering
of 533 identified altered fecal metabolites by chemical similarity with x-axis of mediation logarithmic additive octanol-water partition coefficients (XlogP)
and y-axis for sets statistical significance based on the Kolmogorov-Smirnov test; the node size depicted total compound numbers for each cluster set and
node color scale the proportion of GF-enriched vs. CONV-R enriched metabolites. e Quantitative metabolite set enrichment analysis (QMSEA) based on 99
a priori defined sets of metabolites identified a total of 71 significantly perturbed fecal metabolic pathways (adjusted p < 0.05) with top 50 shown. Dim
dimension, LC/MS liquid chromatography-mass spectrometry, TIC total ion chromatogram, TriHOME trihydroxyoctadecenoic acid, FA fatty acid, HODE

hydroxyoctadecadienoic acid, CoA coenzyme A.

with crucial functions in motivation, reward, and hedonistic
regulation?’. Consistent with previous data?$, our results showed
markedly higher fecal levels of norepinephrine (2.9-fold),
epinephrine (3.2-fold), as well as two dopamine precursors
tyramine (5.7-fold) and L-DOPA (4.7-fold). Though fecal
dopamine levels manifested no statistical difference, we found
two related sulfate-conjugates (dopamine-3-O-sulfate and dopa-
mine-4-sulfate) substantially elevated when microbiota was
present (Fig. 4e), warranting future analyses. Glutamine/gluta-
mate-GABA metabolism, coupling with much altered tricar-
boxylic acid (TCA) cycle, was also perturbed in the gut,
as represented by decreased L-glutamine (2.3-fold) and elevated
L-glutamate (2.5-fold) and GABA (6.8-fold) with the presence of
microbiota (Fig. 4f).

Unexpectedly, we observed a realm of conjugated compounds
altered owing to microbiota, involving glucuronides and sulfates of
neurotransmitters (Fig. 4g). We constructed a heatmap of them,
with 28 enriched in CONV-R feces and five with opposite trends
(Fig. 4g). Based on extensive literature search, we highlighted those
with neuromodulatory properties in bold texts, including 11
compounds much diminished (e.g., N-acetylserotonin glucuronide)

and three enriched (e.g., dopamine 4-sulfate) when microbiota was
present, alongside other conjugates of diet-derived flavonoids (e.g.,
genistein 4’-O-glucuronide), bile acids (e.g., taurocholate 3-sulfate),
and indole derivatives (e.g., indole-3-carboxylate-O-sulfate, indole-
3-acetate O-glucuronide) (Fig. 4g). These data together support that
the present microbiota plays an integral role in neurotransmitter
metabolism in the local gut lumen in terms of production,
transformation, and bioavailability, warranting future efforts to
delineate microbial species-level contributions in a time- and space-
specific manner.

Microbial impacts on circulating blood metabolism and fecal-
blood exchange. With detailing of microbiota’s control over gut
metabolism and neurotransmitter profiles, the question arises as
to whether these local effects will propagate from gut to periph-
eral organs. To investigate this, we profiled the circulating blood
sera of GF and CONV-R mice. We observed systemic perturba-
tions, though not as striking as the fecal data, for serum meta-
bolome due to microbiota (Fig. 5a—c), with 3,977 significant ion
features detected that accounted for 21.0% of total aligned
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Fig. 3 Select high-impact gut metabolites and pathways as regulated by microbiota. a Variable importance plot of top 50 fecal metabolites (y-axis) ranked
by contribution to mean decrease accuracy of Gini coefficient (x-axis) in the random forest model for discerning group difference. b Diagram summary of perturbed
fecal pathways of phenylalanine, tyrosine, and tryptophan biosynthesis and metabolism, with significantly altered metabolites labeled in red (GF>CONV-R) or blue
(GF<CONV-R) (two-sided Welch's t-test, fold change > 1.5, p < 0.01). ¢, d Box and Whisker plots of fecal indoles (¢) and bile acid profiles (d) as synthesized or
mediated by microbiota, with the box ranging from the first quartile to the third while the whiskers going from each quartile to the minimum or maximum (GF,
N=12; CONV-R, N=12), *p<0.05, *p<0.01, **p<0.001, ***p < 0.0001, two-sided Welch's t-test; exact p values and adjusted p values (i.e., g values) are

provided in Supplementary Data 2. SM sphingomyelin, Phe L-phenylalanine, Tyr L-tyrosine, Trp L-tryptophan, 5-HT 5-hydroxytryptamine, NAS N-acetylserotonin,
5-MIAA 5-methoxyindole-3-acetate, Kyna kynurenate, Kyn L-kynurenine, AA anthranilate, XA xanthurenate, IAA indole-3-acetate, IPA indole-3-propionate, ILA
indole-3-lactate, I3A indole-3-carboxaldehyde, L-DOPA L-3,4-dihydroxyphenylalanine, DHICA 5,6-dihydroxyindole-2-carboxylate, CDCA chenodeoxycholate, CA
cholate, ’MCA a-muricholate, TCDCA taurochenodeoxycholate, TCA taurocholate, TaMCA tauro a-muricholate, DCA deoxycholate, HDCA hyodeoxycholate,

LCA lithocholate.

features. We successfully resolved 231 unique structures from
these altered features (Supplementary Data 3).

To infer, we performed chemical similarity enrichment and
quantitative pathway enrichment analyses. ChemRICH plot
clustered the serum metabolites into 27 chemical classes,
spanning carnitines, dipeptides, indoles alongside lipid species,
amino acids, and organic acids (Fig. 5d; Supplementary Data 8,
9). We discovered that 175 out of the total 231 metabolites
(75.8%) were downregulated in the presence of microbiota, also
indicated by the prevailing purple-to-red colors (Fig. 5d). gqMSEA

analysis revealed for circulating blood 61 significantly enriched
pathways (adjusted p <0.05) (Supplementary Data 10), with top
50 shown (Fig. 5e). In line with fecal data, top enriched serum
pathways spanned from porphyrin metabolism, ketone body
metabolism, bile acid biosynthesis to numerous amino acid
metabolism, including the aromatic amino acid family (Fig. 5e).
The results show that microbiota has systemic effects and can
modulate peripheral blood circulation, raising possibilities of a
microbiota-gut-brain axis through humoral transport of mole-
cular cues in vivo.
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Fig. 4 Microbiota extensively mediates neurotransmitter production, deconjugation and transformation in the Gl tract. a-d Box and Whisker plots of
fecal Class A (Rhodopsin-like) GPCR amine neurotransmitters (a), fecal Class C metabotropic neurotransmitter L-glutamate and GABA (b), CONV-R
enriched neurotransmitters and related molecules (€) and GF-enriched neurotransmitters and related molecules (d), with the box ranging from the first
quartile to the third while the whiskers going from each quartile to the minimum or maximum (GF, N=12; CONV-R, N=12), *p<0.05, **p<0.01,
***p < 0.001, ***p < 0.0001, two-sided Welch's t test; exact p-values and adjusted p values (i.e., g values) are provided in Supplementary Data 2.

(e) Diagram summary of altered fecal catecholamine biosynthetic pathways due to microbiota, with the significantly altered metabolites labeled in red
(GF>CONV-R) or blue (GF<CONV-R) (two-sided Welch's t-test, fold change > 1.5, p < 0.01). f Diagram summary of altered fecal (glutamine-)glutamate-
GABA metabolism coupling with citric acid cycle due to microbiota, with the significantly altered metabolites labeled in red (GF>CONV-R) or blue
(GF<CONV-R) (Welch's t-test, fold change > 1.5, p < 0.01). g Heatmap clustering of distinct fecal metabolites from Phase Il reaction; glucuronides or
sulfates of neurotransmitters or related compounds were labeled by bold texts with asterisks showing statistical significance. GABA y-aminobutyrate,
5-HTP 5-hydroxy-L-tryptophan, 5-HT 5-hydroxytryptamine, 5-HIAA 5-hydroxyindoleacetate, PLA DL-3-phenyllactate, HPLA DL-p-hydroxyphenyllactate,
DOPEG 3,4-dihydroxyphenylglycol, MOPEG 3-methoxy-4-hydroxyphenylglycol, MAO monoamine oxidase, CYP2D6 cytochrome P450 2D6, COMT
catechol-O-methyltransferase, TCA cycle tricarboxylic acid cycle, GIn/Glu-GABA metabolism glutamine/glutamate-y-aminobutyrate metabolism, AKG a-
ketoglutarate, L-Asp L-asparagine, L-Ala, L-alanine, GS/GOGAT cycle glutamine synthase/glutamate:2-oxoglutarate aminotransferase cycle, Gly L-glycine,
GABA-T 4-aminobutyrate transaminase, GAD glutamic acid decarboxylase.

Similar to fecal data, we focused on

analyses ranked all altered 231 serum metabolites by

to group separation, with top 50 shown (Fig. 6a). In addition to
acylcarnitines,

metabolites for energy processes

(e.g.

individual serum
metabolites for in-depth analyses to delineate potential gut-
blood network and neuroendocrine pathways. Random forest

contribution
fold),

contributing to

oligopeptides, ketone bodies), we noted a realm of microbial
products in sera. For example, the top-ranked 4-ethylphenol, is a
known tyrosine metabolite synthesized by bacteria?®-30. Phenyl
sulfate ranked third with surging levels in CONV-R sera (173.33-
is a confirmed gut-microbiota-derived uremic toxin

albuminuria in diabetic kidney disease3! (Fig. 6a;
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Fig. 5 Global effects of microbiota on host circulating blood metabolism. a, b Principal component analysis score plot (a) and scree loading plot (b) for
assessing serum metabolomic data comparing GF (N =12) and CONV-R mice (N =12) under heated ESI4+ mode. ¢ Metabolomic total ion chromatogram
cloudplot of significant features in serum between groups (p value < 0.01, fold change > 1.5, two-sided Welch's t test) using heated ESI+ as an example;
larger circle size indicated larger fold change values ranging from 1.5-1,347.1. d Chemical similarity enrichment analysis (ChemRICH) clustering of 231
identified altered serum metabolites by chemical similarity with x-axis of mediation logarithmic additive octanol-water partition coefficients (XlogP) and y-
axis for sets statistical significance based on the Kolmogorov-Smirnov test; the node size depicted total compound numbers for each cluster set and node
color scale the proportion of GF-enriched vs. CONV-R enriched metabolites. e Quantitative metabolite set enrichment analysis (QMSEA) based on 99 a
priori defined sets of metabolites identified a total of 57 significantly perturbed serum metabolic pathways (adjusted p < 0.05) with top 50 shown. LC/MS
liquid chromatography-mass spectrometry, TIC total ion chromatogram, HETE 5-hydroxyeicosatetraenoic acid, FA fatty acid.

Supplementary Data 3). Another phenolic derivative N-(2-
phenylacetyl)glycine (PAG), with 10.5-fold elevation with micro-
biota, was ranked the fifth place. In the VIP chart, we also
observed several tryptophan indole derivatives enriched in
CONV-R serum. These included indoxyl sulfate (4,351.6-fold),
IPA (7.3-fold), methyl indole-3-acetate (4.3-fold) alongside other
indoles (Supplementary Fig. 2a). The results together support that
microbiota’s systemic effects on the host involve humoral
transport of microbial molecular cues.

To detail the microbiota-serum metabolome network, we
focused on aromatic amino acid pathways (Fig. 6b) with multiple
top-ranked phenolics and indoles on the VIP chart (Fig. 6a).
Compared with fecal data (Fig. 3b), we observed for CONV-R
sera overall a consistent pattern, such as enhanced fluxes of
tryptophan catabolism featuring decreased kynurenine and
enriched indoles. That said, interestingly, we noted that serum
serotonin levels, though at high peak intensity (area, 108), were
not statistically different between the CONV-R and GF mice,
which was in conflict with studies illuminating microbiota’s
regulation of peripheral serotonin levels32. We re-evaluated our
data and discovered that serum serotonin levels were markedly
higher in male CONV-R mice than in male GF mice (p = 0.0022,
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pairwise Wilcoxon rank-sum test, with a CONV-R/GF fold
change of 1.6), while female mice exhibited no statistical
difference (p = 0.18) (Supplementary Fig. 2b), suggesting gender
as a potential factor in gut microbial effects on mammalian
circulating serotonin levels. We also examined serum neuro-
transmitter and neuromodulatory compounds (Supplementary
Fig. 2c) and noted that glycine, cortisol, and 2-aminoadipate
shared a similar trend with fecal data (decreased in CONV-R
mice). Whereas histamine and GABA embraced an opposite
trend with markedly lower levels in CONV-R than in GF sera.
Surprisingly, CONV-R-gut-enriched neurotransmitters such as
acetylcholine, epinephrine, and taurine were either below
detection levels in serum or exhibited no statistical difference
between groups. The results together show that microbiota’s
modulation of peripheral circulating neurotransmitters is strictly
compartmentalized.

To further delineate gut-blood exchange, we focused on
metabolites of GF/CONV-R difference shared by fecal and serum
matrices. In total, 88 metabolite pairs are shown in MetaMapp
network graphs®3 for a side-by-side comparison (Fig. 6¢, d). The
network analyses generated nine compound clusters, including
fatty acids, amino acids, and carnitines/choline. The overall
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Fig. 6 Select high-impact metabolites and pathways in circulating blood and their enterohepatic transport. a \Variable importance plot of top 50 serum
metabolites (y-axis) ranked by contribution to mean decrease accuracy of Gini coefficient (x-axis) in the random forest model for discerning group
difference. b Diagram summary of perturbed serum pathways of phenylalanine, tyrosine and tryptophan biosynthesis and metabolism. ¢, d MetaMapp
metabolomic networks of 88 metabolite pairs altered in feces (¢) and serum (d), with nodes representing individual metabolites, edges for biochemical
(KEGG reactant pairs) and chemical (Tanimoto coefficient > 0.7) relationships, and lower transparency for lower adjusted p values (<0.05, two-sided
Welch's t-test). TMAO trimethylamine N-oxide, PS phosphatidylserine, Phe L-phenylalanine, Tyr L-tyrosine, Trp L-tryptophan, Kyn L-kynurenine, AA
anthranilate, IAA indole-3-acetate, IPA indole-3-propionate, ILA indole-3-lactate, IArcA indole-3-acrylate, 13A indole-3-carboxaldehyde, Shikimate 3-P
shikimate 3-phosphate, DHICA 5,6-dihydroxyindole-2-carboxylate, AKG a-ketoglutarate, L-DOPA L-3,4-dihydroxyphenylalanine, SULT sulfotransferase,
CYP450 cytochrome 450, TCA cycle tricarboxylic acid cycle.

change in serum was smaller than in feces, as indicated by
generally smaller node sizes and larger adjusted p-values of
Welch’s t-test (Fig. 6¢, d). We noted that fatty acid pairs,
including microbiota-derived adipate3* and sebacate3> embraced
a contrasting gut-blood pattern, with 20 elevated in feces but
lowered in serum for microbiota-harboring mice. Conversely,
phenolics such as hydroxyphenyllactate and 4-hydroxy-3-
methoxycinnamate were lower in feces but higher in blood sera
for CONV-R mice. Apart from these two, other compound
classes showed similar fecal-blood patterns of change, spanning
amino acid derivatives (including indoles), nucleotides, steroids,

and carnitines/choline. The results support that microbiota’s
impacts on local gut epithelial homeostasis, energy harvest, and
signaling can translocate and propagate to peripheral blood
circulation, raising further possibilities of humoral transport and
effects on host CNS.

Integrated analyses of cerebral cortical brain, feces, and blood
serum metabolomes. To further determine whether commensal
microbiota modulates brain biochemistry, we profiled the meta-
bolome of cerebral cortical brain tissues comparing GF and
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Fig. 7 Metabolites of microbial
importance plot of top 50 brain

neuroactive potential: integrated analyses of cerebral cortical brain, fecal and blood serum metabolomes. a Variable
metabolites (y-axis) ranked by contribution to mean decrease accuracy of Gini coefficient (x-axis) in the random forest

model for discerning group difference; embedded was a MetaMapp network view of all 58 metabolites altered in cerebral cortical brain tissues owing to
microbiota, with nodes representing individual metabolites, edges for biochemical (Kyoto Encyclopedia of Genes and Genomes, i.e., KEGG reactant pairs)
and chemical (Tanimoto coefficient > 0.7) relationships and lower transparency for lower p values (<0.05, two-sided Welch's t test). b Box and Whisker
plots of select metabolites exhibiting systemic alterations across feces, blood sera, and cerebral cortical brain tissues as mediated by microbiota, with the
box ranging from the first quartile to the third while the whiskers going from each quartile to the minimum or maximum (n=24), *p <0.05, **p < 0.01,
***<0.001, ****p < 0.0001, two-sided Welch's t test; exact p values and adjusted p values (i.e., g values) are provided in Supplementary Data 4.

(e) Structural annotation of ion feature m/z 212.002 at the retention time of 4.9 min as indoxyl sulfate that was highly enriched in CONV-R blood sera
(4351.6-fold) and cerebral cortical brain tissues (26.8-fold) compared with GF mice. PAG N-(2-phenylacetylglycine, TMAO trimethylamine N-oxide, Gly-
Phe glycine-phenylalanine dipeptide, HCD higher-energy C-trap dissociation, EIC extracted ion chromatogram, m/z mass-to-charge ratios, RTeyp
experimental retention time (from data), RTqp, reference retention time (from chemical standard).

CONV-R mice. We focused on the cerebral cortex region because
it is the largest site of neural integration (occupying over two-
thirds of mammalian brain mass), carries pivotal roles in brain
functions such as thinking, memory, language, and
consciousness>®37, and importantly, cerebral cortical injuries are
often linked to onset of mental disorders such as depression38
among which many also are common comorbidities to gut dys-
biosis. In total, we identified 58 altered metabolites in cerebral
cortical brain tissues (Supplementary Data 4). To interpret these,
we constructed a network graph of all metabolites and ranked
them based on a random forest model (Fig. 7a). The network
showed changes in diverse compounds, as represented by indoles,

amino acids, nucleotides, and fatty acids. On the VIP chart, we
discovered an array of markers and pathways related to oxidative
stress and reactive oxygen species (ROS) reaction. For example,
the methionine/glutathione transsulfuration pathway was exten-
sively perturbed in brain, as characterized by elevated levels of
L-methionine (1.47-fold), S-(5’-adenosyl)-L-homocysteine (SAH,
1.30-fold), L-glutathione (GSH, 15.1-fold), and 5’-deoxy-5-
methylthioadenosine (1.62-fold) when microbiota was present
(Supplementary Fig. 3)3%40. We also noted for CONV-R brain
elevated levels of two eicosanoids prostaglandin B2 (1.8-fold) and
E2 (1.7-fold), a-ketoglutarate (AKG, 1.4-fold) (a sensitive oxida-
tive stress indicator) as well as the antioxidative ketone body
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3-hydroxybutyrate (2.0-fold). In addition to generic markers, we
discovered a range of microbiota-derived metabolites implicated
in redox homeostasis. These spanned short-chain fatty acids (e.g.,
butyrate, caproate), indoles (e.g., indoxyl sulfate, indole-3-lactate),
trimethylamine-N-oxide (TMAO), shikimate and phenylalanine
derivatives (e.g., hydroxyphenyllactate, PAG), all elevated in
CONV-R brain tissues compared with GF mice (Fig. 7a). The
results support that commensal microbiota can largely mediate,
directly or indirectly, redox homeostasis, energy metabolism, as
well as neuronal signaling inside the mammalian CNS.

To further interpret in light of the gut-brain axis, we compared
multiple matrices for an integrated analysis, with examples shown
in boxplots (Fig. 7b). We noted under heated ESI- analysis mode,
ion feature m/z 212.002 at the retention time of 4.9 minutes was
much elevated in CONV-R mice while virtually absent in GF
mice, with highest fold changes in both sera (4,351.6-fold) and
brain tissues (26.8-fold) (Fig. 7b). In silico formula analyses
determined the elemental composition of this ion feature to be
CgHgNO,S ([M-H]-), based on which the neutral structure was
dereplicated and confirmed as indoxyl sulfate (Fig. 7c). Indoxyl
sulfate was a known uremic toxin and cardiotoxin that originated
from host-microbiota metabolism of dietary tryptophan. Our
results indicated that microbiota-derived indoxyl sulfate may
cross the BBB and reach the CNS, which was consistent with two
emerging studies*!#2. Similar to indoxyl sulfate which has
microbial relevance and shared trends across compartmental
matrices, we also noted two other aromatic amino acid derivatives
indole-3-lactate and PAG that were enriched in CONV-R mice.
Other potential humoral pathways indicated in this study were
exemplified for CONV-R mice by elevated levels of TMAO,
methionine, vitamin Bs in all three matrices and decreased levels
of allantoin and corticosterone in serum and brain tissues
(Fig. 7b; Supplementary Data 1-4).

Microbial rewiring of host biochemistry has gender-specific
characteristics. Sex dimorphism has been increasingly identified
in host-microbiota interaction3. Here, to assess the gender-
specificity of microbiota-metabolome signatures in light of the
humoral gut-brain axis, we revisited aligned feature tables and
performed two-way analysis of variance (ANOVA) for all ion
features considering both variables of microbiota (GF/COVN-R)
and gender (male/female). For features with significant main
effects of microbiota, a considerable proportion also exhibited
microbiotaxgender interaction in feces (32.6% out of 63.0%, i.e.,
51.7%, HESI+), while less for sera (36.5%, HESI+) and least for
the cortical brain (10%, HESI+) (adjusted p < 0.05) (Fig. 8a); for a
more general check, a main effect of gender has been identified
for a number of features in all three matrices, among which fecal
features embraced the largest proportion with microbiotaxgender
interaction (82.8%, HESI+), while less for sera (51.3%, HESI+)
and least for brain tissues (11.0%, HESI+) (Fig. 8b). Grouping
data by gender, post hoc Tukey’s honestly significant difference
(HSD) test was conducted comparing GF and CONV-R (adjusted
p<0.05) to examine whether individual features of significant
main effects of microbiota exhibited sex-specificity (i.e., only of
GF/CONV-R difference either in male or female) with the
gender-specific distribution summarized in Venn diagrams
(Supplementary Fig. 4) and pie charts (Fig. 8c—e). In parallel, we
revisited the annotation tables to examine gender specificity of the
altered metabolites, yielding PieDonut distributions (Fig. 8f-h)
that embraced a consistent trend with ion feature pie chart (i.e.,
feces < sera = brain) in terms of the proportion of sex-specific
molecular signatures. Beyond GF/CONV-R comparison and for a
more general check, we also performed Tukey’s HSD test on GF/
CONV-R grouped data to compare separately for male and

female, with ion feature distribution summarized in Venn dia-
grams and pie charts (Supplementary Fig. 5).

To examine sex-specific biochemical details, MetaMapp net-
work graphs (Supplementary Fig. 6-8) and MSEA charts
(Supplementary Fig. 9) were generated from sex-specific
metabolites of GF/CONV-R difference (Supplementary Data 11).
We noted for fecal metabolomes amino acids, oligopeptides,
oxylipins, bile acids, and nucleobases that were either only altered
in males (67 compounds) or in females (60 compounds)
(Supplementary Fig. 6). Specifically, tryptophan catabolites
kynurenate, xanthurenate, indole-3-carboxaldehyde, and 4-(2-
aminophenyl)-2,4-dioxobutanoate were elevated exclusively in
male CONV-R feces compared to GF males (Supplementary
Fig. 6a). Known microbial products also exhibited alterations
selective to gender, as represented by sebacate and adipate only
for male feces (Supplementary Fig. 6a) and by 2,3-butadione, a
known bacterial toxin linked to health conditions, such as
inflammatory bowel diseases*4, cystic fibrosis*>, and nonalcoholic
fatty liver disease®® that was enriched only in the female fecal
metabolome when microbiota was present (Supplementary
Fig. 6b). For sera, we observed a realm of lipids, organic acids,
and amino acids that exhibited gender-specific qualities (Supple-
mentary Fig. 7). Specifically, for male blood sera, multiple
acylcarnitines had differentiated levels between GF and CONV-R
(Supplementary Fig. 7a), while female sera involved an array of
phospholipids, oxylipins, and long-chain fatty acids that were all
lower in CONV-R than in GF (Supplementary Fig. 7b). We also
noted several aromatic amino acid derivatives that were
selectively altered in females but not in males, including
tryptophan catabolites (e.g., indole-3-carboxaldehyde, indole-3-
lactate) and ferulate (a neuroprotectant)’. As for metabolites in
the cortical brain, we discovered 13 altered specific to male mice
and nine to females, with multiple compounds involved in redox
homeostasis and energy metabolism (Supplementary Fig. 8). Of
note, prostaglandins (B2 and E2), GSH, AKG, and nicotinamide
were only altered in male cortical brains (Supplementary Fig. 8a),
while SAH, indole-3-lactate, caproate, 2-hydroxybutyrate, and
eicosapentaenoate (EPA) underwent changes only in females
(Supplementary Fig. 8b). Taken together, the microbiota-
metabolome-brain axis exhibited gender-specific characteristics
that need to be addressed in future studies of microbiota’s
functional roles in the given pathophenotypes.

Discussion

Recent data support that commensal microbiota regulates
mammalian brain function, opening doors of targeting micro-
biota for neuroprotective causes. However, biochemical under-
pinnings for such microbial effects in light of the gut-brain axis
remain largely unclear. Metabolomics can address this but often
encounters low compound identification rates due to limited
references and tools, such as commercially available chemical
standards and mass spectral databases. To expand metabolome
coverages, recent upgrade of accurate-mass measurement and
cheminformatic tools shows promise for enabling high-
throughput in silico prediction of elemental composition, mole-
cular structures, and chromatographic retention time with inte-
grated and validated procedures. In this light, we sought to apply
a complete suite of cheminformatic rules and tools (untargeted
annotation procedures), alongside the conventional use of an in-
house library based on hundreds of reference chemical standards
(targeted annotation procedures), to conduct high coverage
mapping for the biochemical landscape of the “microbiota-gut-
brain axis.” Fecal matter, blood sera, and cerebral cortical brain
tissues of GF and CONV-R C57BL/6 mice of 8-week-old were
harvested, extracted, and analyzed using high-resolution
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Fig. 8 Microbial rewiring of host metabolism and gut-brain axis exhibits gender-specific characteristics. a Proportions of ion features with significant
main effects of microbiota as determined by two-way analysis of variance (ANOVA) (adjusted p < 0.05). b Proportions of ion features with significant main
effects of gender as determined by two-way ANOVA (adjusted p < 0.05). c-e Pie charts for gender-specific distribution of ion features in feces (¢), sera
(d), and cerebral cortical brain (e) combining both HESI positive and negative modes that had main effects of microbiota (two-way ANOVA, adjusted

p <0.05) while exhibiting statistical GF/CONV-R difference in at least one gender (post hoc Tukey's HSD test, adjusted p < 0.05). f=h PieDonut charts for
gender-specific distribution of the identified compounds in feces (f), sera (g), and cerebral cortical brain (h) as determined by two-way ANOVA (adjusted

p <0.05) and post hoc Tukey's HSD test (adjusted p < 0.05).

LC-HESI-HRMS. Using statistics and cheminformatics, we
screened 20,939 distinct ion features combining both HESI modes
and identified hundreds of altered metabolites, including 533 for
fecal, 231 for serum, and 58 for brain tissues. To our knowledge,
these datasets represent the first high-coverage metabolome
characterization for microbiota’s effects on host biochemistry in
light of humoral routes for interorgan transport and gut-brain
communication.

We gained a “landscape” view of these microbiota-mediated
biochemical changes through both the chemical and pathway
enrichment analyses. For metabolism in gut lumen where trillions
of microbes reside and constant host-microbiota interaction
occurs and converges, a total of 70 chemical class clusters and 71
pathways were significantly perturbed, represented by 14 amino
acid pathways (aromatic amino acids in particular), purines, bile
acids, porphyrins, vitamins (e.g., B and K), and polyamines
alongside massive protein catabolism (over 100 oligopeptides

altered) and energy harvest events (e.g., TCA cycle, acylcarnitine
shuttle). In compliance with past studies?2-24, fecal aromatic
amino acids, especially the tryptophan and tyrosine metabolism,
stood out with high statistical significance and in the 50 multiple
top-ranked metabolite members in random forest classification.
We offered an integrated view of fecal aromatic amino acid
changes and observed for microbiota-harboring mice (i)
enhanced fluxes of tryptophan pathways featuring decreased
tryptophan and enriched indoles, serotonin, xanthurenate, and
kynurenate, (ii) altered shikimate pathway with lowered shiki-
mate and increased levels of chorismate derivatives, (iii) sup-
pressed folate biosynthesis, and (iv) enriched tyrosine and
downstream  by-products including catecholamine neuro-
transmitters. Of significance, we also identified over 30 altered
fecal bile acids with the free-form bile acids (primary and sec-
ondary) much elevated while conjugated primary bile acids sig-
nificantly lowered in the presence of microbiota, including those
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associated with neurodegenerative disease outcomes, such as
Alzheimer’s disease! 148,

Systematic effects of microbiota on blood circulation were
characterized, as represented by 231 altered metabolites of 27
chemical classes and 61 significantly perturbed pathways spanning
porphyrin metabolism, ketone bodies, bile acid biosynthesis, and a
range of amino acids, etc. Note that many of the serum pathways
were also perturbed in the gut, with the latter generally embracing
a larger number of altered metabolites in the given pathway in
parallel with compartment-specific details to note. For instance,
similar to intestinal changes, microbiota-harboring mice exhibited
distinct serum aromatic amino acids featuring (i) enriched levels
of microbiota-derived indoles such as indoxyl sulfate and IPA (an
important ligand to Pregnane X receptors#*>0), (ii) altered shiki-
mate pathway with decreased levels in shikimate-3-phosphate and
quinate, and (iii) enriched phenolic metabolites phenyllactae,
hippurate, salicylate, and phenyl sulfate, while no differences were
detected for tyrosine and associated catecholamine products as
observed in the gut. Notably, the shikimate pathway, which
mammalian cells lack but heavily involved in microorganisms,
were detected to be perturbed by microbiota with effects on other
aromatic amino acids and associated neurotransmitter generation
(e.g., serotonin, tyramine). This suggests a need to evaluate the
microbiota-shikimate-host network and associated health risks,
for example, of using shikimate pathway-inhibiting neurotoxic
herbicides (e.g., glyphosate) that were long believed to be innoc-
uous for mammals®!. On the molecular level, for instance, random
forest classification ranked 4-ethylphenol, a microbial metabolite
of tyrosine?>3® and the precursor of the microbial
4-ethylphenylsulfate®, as a top metabolite variable to CONV-R/GF
group separation. Together, these microbiota-driven systemic
changes coupling to gut metabolic alteration may serve as a
valuable reference for future studies probing microbial influences
on host physiology and health, warranting efforts to further
delineate genes, enzymes, and transporters involved as well as
specific microbial members in play.

We also applied high-coverage metabolomics searching for
brain signatures owing to microbiota (Supplementary Fig. 1).
Targeting the cerebral cortical brain region, we sought to find
proof-of-principle of the microbiota-brain network. In total, 58
altered brain metabolites were identified, spanning oxidative
stress makers from methionine/glutathione metabolites, eico-
sanoid prostaglandins, ketone bodies, to microbiota-derived
metabolites such as butyrate, indoxyl sulfate, TMAO, and
shikimate/phenylalanine derivatives hydroxyphenyllactate and
PAG. Overall, the results were consistent with recently emer-
ging studies, featuring specific metabolites (e.g., 2-hydro-
xybutyrate, TMAO, glutathione, and acetylneuraminate)!3-52
and pathways (e.g., oxidative stress, transsulfuration)!3:53:%4,
while complementing well with others that touched upon
short-chain fatty acids®®, microbe-associated molecular pat-
terns (e.g., lipopolysaccharides)®® and phenolics®’. Our new
data support microbiota’s control over physiological conditions
of the CNS, particularly in transsulfuration, redox homeostasis,
and neuroinflammation.

One central theme of the microbiome field is to probe the
neuromodulatory activities of resident microbiota in light of
gut-brain signaling, given their large capacity to produce neuro-
transmitters and associations with many mental and/or neuro-
logic disease outcomes such as depression’, autism spectrum
disorder®8, Alzheimer’s disease*8, and Parkinson’s disease!”.
However, only a few molecular cues underlying such microbiota-
gut-brain axis have been reported to date, leaving the mechanistic
underpinnings largely unclear!3. Our high-coverage approach
incorporating targeted and untargeted annotation procedures
allowed us to address this; the metabolomes of GF/CONV-R

difference, either with common or opposite trends among sample
matrices, indicate possibilities of direct or indirect humoral
pathways, as partially supported by reported knowledge con-
cerning interorgan transport of gut microbial metabolites and in
turn, their effects on permeabilities of the BBB22°%:60,

We discovered for gut microbiota as a master regulator of
neurotransmitter production in the GI tract, as demonstrated in
(i) massive depletion of over 15 “classical” neurotransmitters
without microbiota, (ii) integrated mapping of changes in cate-
cholamine biosynthesis and glutamine/glutamate-GABA meta-
bolism, as well as (iii) tryptophan pathway-derived
neurotransmitters (e.g., serotonin, kynurenate). Further, we found
extensive control of microbiota over their transformation as well,
particularly through deconjugation. The results complement well
recent studies confirming gut bacteria as neurotransmitter pro-
ducers while supporting local gut microbial capacities to reacti-
vate phase II metabolites from their conjugated forms (e.g.,
glucuronides, sulfates), likely through hydrolytic enzymes such as
B-glucuronidases (GUSs) and/or B-glucosidases®!-62. Interest-
ingly, except for histamine, glycine, aminoadipate, and cortisol,
the majority of neurotransmitters with distinct fecal patterns were
either not detected, exhibited no statistical difference, or showed
opposite trends (e.g., GABA, histamine) in the serum metabo-
lome; of note, serum serotonin levels were significantly elevated in
male CONV-R mice (compared with male GF) but were not
significantly different between female groups. These together
show that despite the large metabolic activities of the microbe-
neurotransmitter network in the intestine, humoral transport
and/or systemic effects of these microbiota-derived neuro-
transmitters are relatively confined in gut and can be affected by
gender. Such stringent organ compartmentation and gender-
specific characteristics of microbial neurotransmitters need to be
studied in the future. That said, we nevertheless discovered a
range of compounds potentially involved in interorgan transport
and gut-brain communication, for which the presence of
microbiota contributed surging levels extending from gut and/or
blood to the cerebral cortex. These spanned indoles (e.g., indoxyl
sulfate, indole-3-lactate), phenolics (e.g., 4-ethylphenol, phenyl
sulfate, PAG), choline derivatives (e.g., TMAOQO), vitamin B (e.g.,
pantothenate), butyrate, and methionine, with some virtually
absent in GF mice. Of note, indoxyl sulfate, a known uremic toxin
and an oxidative stress marker originated from gut bacterial
indoxyl®364, embraced the highest fold changes of elevation in
both circulating blood (4,351.6-fold) and brain tissues (26.8-fold)
with the presence of microbiota. Likewise, TMAO was ranked the
third for highest fold changes in both serum (267.3-fold) and
brain (7.32-fold) alongside elevated levels in gut lumen (5.90-
fold) owing to microbiota. TMAO, also a uremic toxin and an
oxidative stress marker, is an oxidation product of gut bacterial
trimethylamine through host hepatic flavin monooxygenase with
demonstrated adverse effects in cardiovascular diseases®®. On the
contrary, antioxidant agents such as pantothenate and Bifido-
bacterium longum product indole-3-lactate®, were also much
elevated in both serum and brain when microbiota was present.
Together, these findings buttress the notion that commensal
microbiota can mediate the CNS (especially redox homeostasis
and neuroinflammation) through direct humoral pathways, but
the effects may vary depending on multiple factors such as spe-
cific microbiota composition and their metabolites, as well as
gender, age, and the health status of mammalian hosts?’.

The strength of this study lies in the use of germ-free mouse
model, the sensitive and high-coverage metabolomics approach,
and a suite of statistics and visualization tools that allows com-
plete profiling and mining of microbiota-specific molecular sig-
natures as well as their multicompartmental comparison for
microbiota-gut-brain interpretation. Cautions and limitations of

12 | (2021)12:6000 | https://doi.org/10.1038/s41467-021-26209-8 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

the present study include: (i) the metabolomics results are by
nature descriptive, necessitating more focused efforts testing
specific hypotheses of humoral interorgan connections through,
for example, fecal transplantation experiments and stable isotope
tracer-assisted flux analysis of specific pathways in question; (ii)
the metabolome changes observed in this study should be con-
sidered as molecular phenotypic representations of host-
microbiota interaction rather than microbial effects alone35; (iii)
use of peak area for statistics instead of absolute molar con-
centrations essential for inferring actual metabolic activities at
given organ matrices; (iv) level 2 annotations confirmed with
accurate-mass MS/MS analyses and machine learning-predicted
retention time in this study may still fall short for an unambig-
uous stereoisomeric assignment; (v) biochemical pathways were
interpreted for breadth and mostly from a reductionist angle,
warranting studies to further delineate at bacteria- and/or
pathway-specific levels and to investigate interaction between
seemingly distinct chemical classes. In summary, we present here
a high-coverage metabolomics approach for characterizing
microbiota’s effects on host metabolome in light of interorgan
transport and gut-brain crosstalk in mice; the novel findings and
insights from this study may prove valuable for future micro-
biome research.

Methods

Chemicals and reagents. LC/MS-grade (Optima™) solvents including methanol
(MeOH; catalog #A456-4), acetonitrile (ACN; catalog #A955-4), water (catalog
#W6-4) and formic acid (catalog #A117-50), were obtained from Fisher Scientific
(Waltham, WA, USA). Stable-isotope-labeling internal standards for a range of
classical neurotransmitters and tryptophan catabolites, including acetylcholine-d13
(N,N,N-trimethyl-d9; 1,1,2,2-d4) (d13-ACh; catalog #D-1780), y-aminobutyric
acid-d2 (d2-GABA; catalog #D-1731), L-glutamine-2,3,3,4,4-d5 (d5-Gln; catalog
#D-2532), L-tryptophan-2,3,3-d3 (d3-Trp; catalog #D-7419), serotonin-a,a,B,p-d4
(d4-5HT; catalog #D-1550), L-kynurenine (ring-d4, 3,3-d2) (d6-Kyn; catalog
#DLM-7842), indole-3-acetic-2,2-d2 acid (d2-IAA; catalog #D-1709) and indole-3-
propionic-2,2-d2 acid (d2-IPA; catalog #D-7686) were obtained from CDN Iso-
topes (Pointe-Claire, Quebec, Canada) and Cambridge Isotopes (Tewksbury, MA,
USA). For quality control, these internal standards were spiked in sample pre-
treatment for monitoring sample recovery and analytical variability.

Animals. All animal procedures were approved by the Institutional Animal Care &
Use Committee (IACUC) at The University of North Carolina at Chapel Hill
(UNC) under study protocol number 19-235.0. Conventionally raised (CONV-R)
wild-type C57BL/6 mice were obtained from the Jackson Laboratory (Bar harbor,
ME, USA) and housed under specific-pathogen-free (SPF) conditions at the UNC
animal facility for multiple generations; germ-free (GF) mice were generated and
housed in stringently germ-free chambers for generations at the National Gnoto-
biotic Rodent Resource Center of UNC in Association for Assessment and
Accreditation of Laboratory Animal Care International (AAALAC)-accredited
facilities (Chapel Hill, NC, USA). C57BL/6 mouse littermates of ~7 weeks old
raised under GF and conventional conditions were age-matched upon selection for
sacrifice and analyses, resulting in a final total of 24 mice, including 12 GF mice
and 12 SPF CONV-R mice with 6 males and 6 females included in each. The
animals were raised under the following conditions: 22 °C, 40-70% humidity, and a
daily 12:12 h light-dark cycle. For dietary administration, we consistently fed all
mice the same purified (and sterile) standard Prolab RHM 3000 pelleted rodent
diets (St. Louis, MO, USA) and provided tap water ad libitum. Prior to sacrifice and
sample harvest, all mice were observed under their original housing conditions for
one week; animals were not considered if they exhibited significant signs of serious
injury or morbidity (e.g., malocclusion or fight wounds). Upon euthanization in
CO, chambers, feces, brain, and blood sera were harvested, snap-frozen, and stored
in -80 °C freezer before analysis.

Sample extraction. Fecal matter, blood sera, and brain tissues (of the cerebral
cortical region) were aliquoted and extracted for metabolome analyses. To max-
imize coverage and throughput, extraction procedures were kept as simple and
nonselective as can be. For feces, ~20 mg thawed samples were aliquoted to a 1.5-
mL Eppendorf tube (Hamburg, Germany) with ~30 mg acid-washed glass beads
added (Sigma-Aldrich, St. Louis, MO). For every 10 mg feces aliquots, 300 uL of
ice-cold MeOH:water (50:50, v/v) with spiked ISDs were added for extraction. The
samples were homogenized on a TissueLyzer (Qiagen, Hilden, Germany) at 50 Hz
for 10 min and centrifuged at 12,000 x g for 10 min (Eppendorf, Hamburg,
Germany). A 100-pL aliquot of the supernatant was transferred and dried in a
CentriVap vacuum evaporator (Labconco, MO, USA). For serum, 20 pL was

aliquoted from each sample in a 1.5-mL Eppendorf tube (Hamburg, Germany). A
total of 180 uL ice-cold ISD-containing MeOH was added, vortexed, and incubated
at -20 °C freezer for 30 min. The extracts were centrifuged at 15,000 x g for 10 min
for precipitation of particulates and proteins. Aliquoted 100-uL of supernatants
were SpeedVac-dried as described above. For cerebral cortical brain tissues, ~20 mg
was aliquoted from each sample to a 2-mL screw cap microcentrifuge tubes (VWR,
Radnor, PA, USA) that contained clean stainless-steel beads of 5-mm i.d. To every
20 mg tissue, 400 uL of the ice-cold ISD-containing MeOH was added for extrac-
tion. The samples were homogenized on a TissueLyzer (Qiagen, Hilden, Germany)
at 50 Hz for 2 min and further incubated at -20 °C for 1 h prior to centrifugation at
18,000 x g for 10 min. One hundred-pL of the extractant supernatants were
SpeedVac-dried as described before. Upon instrumental analysis, all dried extracts,
including feces, sera, and brain tissue, were resuspended in 50 pL ACN:water (2:98,
v/v) for injection.

Instrumental analysis. Global metabolome profiling was performed on a Thermo
Fisher Scientific Vanquish UHPLC coupling to a high-resolution accurate-mass
(HRAM) Q-Exactive mass spectrometer interfacing with a heated electrospray
ionization (HESI) source and a hybrid quadrupole-orbitrap mass analyzer (Wal-
tham, MA, USA). For chromatographic separation, a Waters Acquity UPLC HSS
T3 column (1004, 1.8 pm, 2.1 mm x 100 mm) was used (Milford, MA, USA). The
mobile phases consisted of 0.1% formic acid in water (A) and 0.1% formic acid in
ACN (B), flowing at a rate of 0.4 mL/min under 40 °C with a 15-min gradient: 2%
B, 0-1 min; 2 to 15% B, 1-3 min; 15 to 50% B, 3-6 min; 50 to 98% B, 6-7.5 min;
98% B, 7.5-11.5 min; 98 to 2% B, 11.5-11.6 min; 2% B, 11.6-15 min. HESI positive
and negative ionization were both performed, with following ion source setting:
sheath gas 60 L/min, aux gas 10 L/min, sweep gas 1 L/min, spray voltage 2.75 kV,
capillary 325 °C, and aux gas heater 400 °C. All mass spectral data (in * RAW
format) were acquired through the Thermo XCalibur program (version 4.1)
(Waltham, MA, USA). For MS1 full scan profiling (Q not used) aiming at
examining global metabolomic profiles while screening for distinct ion features, the
mass spectrometer was operated scanning mass range of 80-1,000 Da with a mass
resolution of 70,000 full width at half height (FWHM) at 200 Da. For MS/MS
spectra acquisition in later unknown structural annotation stages (with both Q and
orbitrap running), the mass spectrometer was operated scanning for 80-1,000 Da in
full-scan MS1 mode (FWHM 70,000; AGC target 3e6; max IT 200 ms) alternating
with parallel reaction monitoring (PRM) MS/MS mode with normalized collision
energy averaging 10, 50 and 100 (FWHM 17 500; AGC target 2e5; max IT 50 ms).

Data processing, statistics, and visualization. MS1 full-scan * RAW data were
converted to *.mzXML files in ProteoWizards MS Convert (Palo Alto, CA, USA)
and uploaded to Scripps XCMS®’ (La Jolla, CA, USA) for data processing, resulting
in master peak tables aligning all samples separately from three sample types
acquired under two HESI polarity modes. The dataset was analyzed in R by
Welch’s t-test with adjusted p-values (i.e., g values) calculated based on the
Benjamin-Hochberg procedure to compare GF and CONV-R groups. To further
determine the effect of gender, two-way analysis of variance (ANOVA) was con-
ducted. Raw peak areas for each ion feature were pareto-scaled and log-
transformed to meet the test assumptions of ANOVA (e.g., no significant outliers,
normality, and homogeneity of variance). Then, two-way ANOVA and post hoc
Tukey’s (honestly significant difference) HSD test were performed to determine the
main effects of microbiota and gender and to test for within-group statistical
difference, respectively. Plots and analyses including Box and Whisker plot, bar-
plot, principal component analysis score and scree plot, variable importance plot,
PieDonut chart, as well as heatmaps were generated in R (version 4.0.1) (Vienna,
Austria) using packages including readxl (version 1.3.1), dplyr (version 1.0.6),
tidyverse (version 1.3.1), ggplot2 (version 3.3.3), ggpubr (version 0.4.0), ggthemes
(version 4.2.4), ggsignif (version 0.6.1), RColorBrewer (version 1.1.2), dendextend
(version 1.15.1), randomForest (version 4.6.14), FactoMineR (version 2.4), fac-
toextra (version 1.0.7), pheatmap (version 1.0.12), wesanderson (version 0.3.6), and
webr (version 0.1.5)8. Specifically for principal component analysis, we performed
Pareto scaling first and included all ion features from the alignment table for the
given sample matrix under specific heated ESI mode; for a showcase, the PCA score
plots were generated using all 17,386 ion features for feces (HESI+) (Fig. 2a, b) and
10,012 features in total for blood sera (HESI+) (Fig. 5a, b). Random forest clas-
sification was conducted using the randomForest (version 4.6.14) and rfPermute
(version 2.2) packages of R (Vienna, Austria) to generate variable importance plots
to rank individual metabolites, with hyperparameters and permutation results
provided (Supplementary Information)®. Metabolite networks were constructed
using a MetaMapp approach? (web-based portal, version 2020) that calculated
biological pathways relevance (KEGG reactant pairs) and chemical structural
similarity (Tanimoto coefficient > 0.7) which were further visualized in CytoScape
with version 2.7.2 for Window 10 OS and version 3.8.0 for macOS (Seattle, WA,
USA). Chemical similarity enrichment analysis (ChemRICH) plots were con-
structed to visualize changing metabolites based on chemical classes (Davis, CA,
USA)!?. Quantitative metabolite set enrichment analysis (QMSEA) was conducted
on altered metabolites in MetaboAnalyst 4.0 (Montreal, QC, Canada) using their
PubChem CID identifiers and log-transformed peak area pairs as data input to
compute based on 99 a priori defined sets of metabolites in pathway-associated
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metabolites sets (SMPDB); metabolite sets that contained at least two compounds
were used.

Compound identification. Since the millennium, untargeted/global metabolomics
has been fast evolving with significant development in gas/liquid chromatography-
mass spectrometry technologies, featuring the rise of accurate-mass measurement
that has since opened doors of confident de novo determination of elemental
composition and chemical structure in a high-throughput, sensitive, and non-
selective manner”0. The conceptual differences between the untargeted analysis,
targeted analysis, and the like in metabolomics necessitates clear elucidation. The
untargeted/global metabolomics analysis aims to detect as many features as pos-
sible in a single run and after a differential statistical comparison, the significant
ones are sent to compound identification for hypothesis generation; annotation
strategies can be either knowledge-based/targeted (matching against a pre-
determined in-house spectral library or experimental databases) or data-driven/
untargeted (inferring directly from data, e.g., using streamlined in silico che-
minformatic algorithms and scoring). While, in the case of targeted metabolomics,
one has previous information of what he/she will look for, such as precursor/
fragment transitions, and usually seeks a quantitative analysis to determine the
absolute concentration levels using commercial labeled standards. In this study, we
conducted global full-scan profiling of all ion features, performed statistics for
those aligned across all samples, and leveraged both targeted (with known refer-
ence) and untargeted (infer from data directly) cheminformatic strategies for
annotation with goals to identify/annotate all ion features with statistical sig-
nificance (Supplementary Fig. 1). We refer to our approach as “high-coverage
annotation,” since both the knowledge-based/targeted and data-driven/untargeted
annotation strategies were performed on all significant ion features in a streamlined
manner, allowing for integrated scoring, cross-validation, and postretention time
prediction and filtering that helped achieve highest metabolome coverage possible.

Specifically, we collected a total of 20,939 tandem mass spectra of distinct ion
features (pertaining to the microbiota-gut-brain connection) for structural annotation.
These included 16,001 for feces, 3,977 for sera, and 961 for cerebral tissues combining
HESI positive and negative modes. The *.RAW data were converted into *.abf format
using the Reifycs Abf Converter (https://www.reifycs.com/AbfConverter/), uploaded
to MS-DIAL 4.16 (Riken, Japan)! to obtain * MAT files that contained MS1 accurate
mass, MSI isotopic abundances, MS/MS spectra, and retention time for each ion
feature with an acquired tandem mass spectrum. The targeted annotation procedure
exploits an in-house experimental library established from 423 authentic chemical
standards of canonical pathways, neurotransmitters, and literature-reported microbial
metabolites; the local library stores chromatographic retention time, accurate mass,
and characteristic MS2 fragment ions. For untargeted analyses, a cutting-edge
cheminformatic pipeline was used integrating machine learning-based retention time
predication (Retip)!%, embedded experimental mass spectral database search
(GNPS72, MassBank”3, and ReSpect’?, totaling 28,293 spectra), and rule-based in
silico cheminformatic analysis (MS-FINDER, version 3.30)!° which integrates a
number of cheminformatic algorithms while querying major biomolecule chemical
databases, such as HMDB, LipidMAPS and PubChem Biomolecules adding up to
over 100 million structures. The detailed settings of MS-FINDER are provided in
Supplementary Information (Page 12). Importantly, the elemental composition was
predicted (based on MSI accurate mass, MS1 isotopic ratios, and MS/MS product
ions) and filtered based on the Seven Golden Rules!4, which refers to an algorithm
consisting of seven heuristic rules, i.e., (i) restriction for element numbers, (ii) LEWIS
and SENIOR rules, (iii) isotopic patterns, (iv) H/C ratios, (v) element ratios of N, O, P,
S vs. C, (vi) elemental ratio probabilities, and (vii) presence of trimethylsilylation (for
GCl/derivatization platforms if applicable). Afterwards, the top five candidates were
sent to structural dereplication, and chromatographic retention times were predicted
afterward for these structures using the Retip (version 0.5.4) and h2o (version
3.32.1.3) package of R (Vienna, Austria) and compared with true values for
lipophilicity validation and annotation cleanup. The resultant top-score structures
were manually assessed and curated carefully to boost annotation confidence; the
postcuration strategies included, but not limited to, chemical inference, biological
relevance, comparison of targeted and untargeted results, and the use of additional
experimental mass spectral database search including Metlin (La Jolla, CA, USA),
MoNA (Davis, CA, USA), HMDB (Edmonton, AB, Canada), and mzCloud
(Waltham, MA, USA).

The application of specific quality criteria to filter out low-quality MS/MS data
and annotations is not only common but essential in untargeted metabolomics
practices. In this study, however, we did not exclude any ion features of low
abundance (under MS1 full-scan) for MS/MS acquisition, nor did we apply
thresholds of minimum/noise of ion intensity for filtering out low-quality/noisy
tandem MS/MS. This is because (i) we aimed for untargeted annotation in an
unbiased manner for all ion features regardless of low abundances, and (ii) our
integrated and streamlined scoring strategy carried a penalty mechanism itself
(Supplementary Fig. 1c), meaning, if the tandem mass spectrum per se is too noisy
or the quality is poor, the resultant scores will be correspondingly low, and the
annotations will be naturally filtered out from the final annotation list
(Supplementary Fig. 1d). For the finalized tables of the changed fecal metabolome
(Supplementary Data 2), serum metabolome (Supplementary Data 3), and brain
metabolome (Supplementary Data 4), we only included identification/annotation
results of highest confidence, i.e. level 1 confirmed structure and level 2 probable

structure according to the Metabolomics Standard Initiative (MSI) to best inform
future studies on microbiota in health and diseases!7-7>76,

Data availability

The relevant metabolomics raw data and master alignment ion feature tables generated for
this study have been deposited in the National Metabolomics Data Repository (accession
IDs: ST001756, ST001757, and ST001758) with Project No. PR001126 (https://doi.org/
10.21228/M8569X). All source data for figures and tables of this work are available online at
Zenodo (https://doi.org/10.5281/zenodo.5016278) and/or GitHub (https://github.com/
darciliz/nc_hcm_code); requests for additional information or data can be addressed to the
corresponding author. Experimental and in silico mass spectral databases used for
postcuration/validation purposes included MassBank of North America (MoNA) (https://
mona.fiehnlab.ucdavis.edu/), Metlin (https://metlin.scripps.edu/), HMDB (https://hmdb.ca/
), and mzCloud (https://www.mzcloud.org/). Source data are provided with this paper.

Code availability

R Codes and associated data for reproducing part of the figures in this study have been
deposited at GitHub (https://github.com/darciliz/nc_hcm_code). Unless noted otherwise,
all other analyses including ChemRICH and MetaMapp were done using web-based
portal and visualized in standalone GUI software such as Adobe Illustrator (version 2020;
2021) and CytoScape (version 2.7.2 for Window 10 OS and version 3.8.0 for macOS).
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